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Numerical Simulation of Transient Combustion Process in

Pulse Detonation Engine
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A two-dimensional time-accurate numerical model to simulate the transient combustion
process in a pulse detonation engine is presented. For the purpose of constructing an
efficient numerical tool, while maintaining a reasonable accuracy, a two-step global model
has been selected and validated for a hydrogen—air mixture. The inherent stiffness in
the chemical reaction model is properly taken care of by the point-implicit treatment
of source terms, together with the application of a Local Ignition Averaging Model to
each mesh where ignition starts. A series of calculations is performed using different
orders of numerical schemes in spatial and temporal accuracy and different mesh sizes
to select a proper scheme and a mesh size to provide adequate resolution of the physical
process. The calculated results from the present model are compared with the theoretical
Chapman—Jouguet data. A simulation of a shock-induced detonation experiment is also

performed to provide a validation of the present model in the unsteady propagation of a

detonation wave and its interactions with the boundaries as well as other waves.

Introduction

The pulse detonation engine (PDE) has received con-
siderable interest in recent years due to its poten-
tial advantages in performance and inherent simplicity
over current propulsion concepts. The PDE uses det-
onation waves that are initiated repeatedly at either
end of a detonation chamber and propagate through
a fuel—oxidizer mixture with supersonic speed to pro-
duce high pressure which is the main thrusting mecha-
nism. This rapid detonation process permits the PDE
to achieve nearly constant volume combustion resulting
in better efficiencies compared with the usual constant
pressure Brayton cycle. In addition, the PDE does not
necessarily need a compressor or a turbine, and this
makes the engine mechanically simple and cost effec-
tive. Furthermore, PDE’s can be operated in a wide
range of flight speeds, from low subsonic to high super-
sonic, regardless of the engine size and shape [1]—[4].

Conceptually there seems to be no doubt that the
PDE will be a good alternative to conventional engines,
as well as a revolutionary propulsion system for future
space transportation. However, there are still many
problems to be solved and many complex phenomena
to be understood for the PDE to be operable in a real
world. Detonation initiation, the PDE cycle analysis
and optimization are included among the problems [5,
6].
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The PDE can be classified as an unsteady propul-
sion engine which operates in an intermittent manner
governed by a cycle frequency. The cycle frequency of
the PDE is defined as the inverse of the time required
to complete a full detonation cycle. One full cycle is
comprised of several distinct processes: (a) filling the
chamber with a fresh fuel/oxidizer mixture, (b) initi-
ating detonation, (c) propagation of detonation waves,
and (d) expansion of burned gases to reduce the cham-
ber pressure to the refill level. All of these processes
are interdependent, and the interaction and timing are
crucial to multi-cycle engine efficiency. Time-accurate
computational fluid dynamics (CFD) methods can be
used to perform cycle analysis and performance opti-
mization of the PDE from the simulations of the corre-
sponding flow fields with variations in design parame-
ters.

This paper presents an unsteady numerical simula-
tion model for these purposes. The key words here are
accuracy and efficiency. The objective of this work is
to construct a two-dimensional time-accurate numerical
simulation model to be used for PDE’s, efficient enough
for design parametric studies while maintaining a rea-
sonable accuracy. The simulation model is constructed
to formulate the corresponding physical phenomena, as
precisely as possible including chemical and thermal
non-equilibrium, and to numerically solve the result-
ing mathematical formulation as accurately as possible.
The novel aspect of this work includes a combination
of point-implicit treatment and Local Ignition Averag-
ing applied to the global two-step reaction model for
efficient time-accurate solution of a propagating deto-
nation wave. The partition of internal energy is based
on the two-temperature model, and the vibrational en-
ergy of each species is obtained by subtracting out fully-
excited translational and rotational energy from total
internal energy. Roe’s flux-difference split scheme is
combined with the Runge—Kutta integration scheme
for an accurate capture of the shock wave both in space
and in time.



The present model is validated by comparing the
calculated results with the theoretical CJ and exper-
imental data. Shock-induced detonation experiments
are simulated to provide a validation of the numeri-
cal model, and as an aid in understanding the exper-
imental results. Extensive calculations are performed
with numerical schemes of different orders in space and
time, and with different mesh sizes to select the proper
scheme and mesh size providing adequate resolution of
the physical process.

Mathmatical Formulation

Governing Equations

The time-dependent conservation equations govern-
ing inviscid, non-heat-conducting, reacting gas flow in
which thermal nonequilibrium is modeled with a two-
temperature approximation are written in the conserva-
tion law form. This form is advantageous in numerical
simulations to correctly capture shock waves [7]. In two
dimensional Cartesian coordinate system, this takes the
following form:
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where U is the vector of conserved variables, F' and G

are the convective flux vectors, and S is the vector of
source terms. Each vector is written as
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In this equation, subscript s ranges 1 to Ng, where
N, is the number of species. The first N, rows rep-
resent species continuities, followed by two momentum
conservation equations for the mixture. The next row
describes the rate of change in the vibrational energy,
and the final row is the total energy conservation equa-
tion. In the above equation, © and v are the velocities
in the z and y direction respectively, p is the mixture
density, p is the pressure, e, is the vibrational energy,
and F is the total energy per unit mass of mixture. p; is
the s-th species density, w, is the mass production rate
of species s per unit volume, and w, is the vibrational
energy source term which is defined as

Wy = Z st + Z Ws€d,s
s s

Here, @Q),s represents the vibrational energy exchange
rate of species s due to the relaxation process with
translational energy, and the second term, wseq,s rep-
resents the amount of vibrational energy gained or lost
due to production or depletion of species s from chem-
ical reactions.
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Thermodynamic Properties

A general representation of species internal energy in-
cludes a portion of the internal energy in thermo-
dynamic equilibrium and the remaining portion in a
nonequilibrium state. The equilibrium portion of the
internal energy is the contribution due to translation
and internal modes that can be assumed to be in equi-
librium at the translational temperature T. The re-
maining nonequilibrium portion is the contribution due
to internal modes that are not in equilibrium at the
translational temperature T, but may be assumed to
satisfy a Boltzman distribution at a different tempera-
ture.

For the temperature range of interest, the rotational
mode is assumed to be fully excited and in equilib-
rium with translational temperature T, while the elec-
tronic excitation and free electron modes can be safely
ignored. Thus, the only remaining energy mode that
could be in nonequilibrium with translational temper-
ature T is the vibrational energy mode. Therefore, the
species internal energy based on the two-temperature
model can be written as follows:

€s = eeq,s(T) + ev,S(Tv) (4)
where eq,s is the equilibrium portion of the internal
energy and e, ; is the vibrational energy which is not in
thermodynamic equilibrium. The equilibrium portion
of the energy can be further defined as

T
Ceqs = / (C2,+Co ) dr+ens  (5)
Trey

where T.s is the reference temperature, ey, is the en-
ergy of formation, and Cj, and Cj . are the transla-
tional and rotational portion of specific heat at con-
stant volume, respectively. Since the translational and
rotational modes are assumed to be fully excited, C7 ,
and C} . can be written as

cs, = 15R/M,

R/M;, diatomic molecule
1.5R/M,, polyatomic molecule

(6)

cs, = (7)

where R is the universal gas constant and M, is the
molecular weight of species s. The energy of forma-
tion e, , can be obtained from readily available heat of
formation data as
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Therefore, the equilibrium portion of energy can be
written as follows:

R R
eeq,s(T) = Ksﬁ(T - Tref) - ﬁTref + hs,o
s s

(9)
where K, is 1.5, 2.5, 3.0 for monatomic, diatomic or
linear polyatomic, and nonlinear polyatomic species re-
spectively.

The heat capacity of the vibrational energy mode can
now be obtained from the fact that the translational



and rotational heat capacities are independent of tem-
perature. This can be evaluated by utilizing the readily
available curve fit for total heat capacity evaluated at
temperature T, and subtracting out the constant con-
tributions from the translation and rotational heat ca-
pacities as follows:
Cow(T) =Cy(Ty) - C5 , = C

v,Tr

(10)
where

Cg(Tv) = C;(Tv) -

S

C, and O are specific heats at constant volume and
constant pressure respectively, and curve fit data for
C;(T') can be found in the following form [8, 9]:
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Therefore we can obtain Cj , as follows:
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The species vibrational energy e, , can be obtained by

integrating C; , such that
T,
enlT) = [ c (13)
Tres

Chemical Kinetics

For accurate modeling of a detonation wave, especially
in the detonation front where rapid chemical reactions
take place in the shock compressed region, species con-
tinuity equations based on the chemical kinetics should
be solved together with fluid dynamic equations to ac-
count for the possible chemical nonequilibrium. The
mass production rate of species s from the chemical
reactions can be written as [10]

N,
= Ms Z(ﬂs,r - as,r)(Rf,r - Rb,r) (14)
r=1

where M is the molecular weight of species s, N, is the
number of reactions, «, , and s, are the stoichiometric
coefficients for reactants and productants, respectively,
in the r reaction. Ry, and Ry, are the forward and
backward reaction rate of r reaction, respectively, de-
fined by

- N,
Ry, = 1000 Kf,TH(O.001pS/MS)aS,T]

L s=1

(15)

-
R,, = 1000 Kb,rH(O.OOlpS/MS)ﬁS,T]

L s=1

The factors 1,000 and 0.001 are required to convert from
CGS units to MKS units, since most reaction rate data
in the literature are found in CGS units.
The forward reaction rate coeflicient can be expressed
by
Ky, = A; . TNt» Exp(—Ey ./ RT) (16)

where E . is the activation energy of the r-th forward
reaction. The values of parameters A¢ ., N¢,, Ey, are
usually found in table format according to the reac-
tions involved. The backward reaction rate coeflicient
is evaluated using the equilibrium constant for the re-
action such that

K,

KC’I‘

’

Ky, = (17)

Vibrational Energy Relaxation

The energy exchange between vibrational and transla-
tional modes due to intermolecular collisions has been
well described by the Landau—Teller formulation where
it is assumed that the vibrational level of a molecule can
change by only one quantum level at a time [11, 12].
The resulting energy exchange rate is given by

Q — p e’T),S(T) - evis
VEETE g >

(18)
where e}  (T') is the vibrational energy per unit mass of
species s evaluated at the local translational —rotational
temperature, and < 7y > is the averaged Landau
—Teller relaxation time of species s given by [10]

ZnJTSJ
< Tg >_
an

where 7g; is the vibrational—translational relaxation
time of species s caused by intermolecular collision with
species j, and n; is number density of species j.

The Landau—Teller inter-species relaxation time 7;
can be obtained in seconds using semi-empirical expres-
sion developed by Millikan and White [13] such that

(19)

Toj = %Emp 4. (17172 — 0.015/") — 18.42] (20)

where
p ; Dpressure 1n atm
Asi = 1.16 x 1073 p,; 03
ts; = MsM;/(Ms+ M;);reduced mass
Os; Characterlstlc v1{)rat10nal temperature

of harmonic oscillator

The vibrational energy relaxation rate can be simpli-
fied using the following approximation [10]:

Zps <r_> NZPS 5”<TS =
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This approximation not only reduces the number of
species dependent parameters but also simplifies the
evaluation of the vibrational relaxation as a single re-
laxation term multiplied by the difference in the trans-
lational and vibrational temperature. When a point
implicit formulation is used on the source terms in the
numerical algorithm, the above approximation greatly
simplifies an implicit treatment of the temperature dif-
ference which drives the relaxation process.

Numerical Formulation
Finite-Volume Formulation

A discretized set of equations is derived from the gov-
erning partial differential equations using the finite-
volume method. The advantage of this method is its
use of the integral form of the equations, which en-
sures conservation, and allows the correct treatment of
discontinuities [7]. In the following derivation, the cell-
centered approach will be described.

For an arbitrary volume w, enclosed by a boundary o,
the governing equations in integral form can be written

as
0 E

where .
H = (F,G)

The unit vector 7 is normal to the infinitesimal area do
and points outwards. The first step to discretize the
above equation is to introduce volume averaged values
of the conserved variables and the source term as fol-
lows:

1 1
<U>:§// U dQ, <S>:§// SdQY (23)

These volume averaged variables are substituted into
the integral form of the governing equations to yield

%(<U>Q)+7{(F,G)-ﬁda:<s>ﬂ

(24)

For two-dimensional Cartesian coordinate system
where the computational cell is defined by two constant
lines of both z and y directions, the surface integral can
be split into four contributions, one from each bounding
surface. When the index of the cell centered variables
s (2, 7), the above surface integral can be written as

Fdo

?{(F,G)-ﬁda :/ Fda+/
4 Tit1/2 Ti—1/2

+ / Gda+/ G do(25)
Ti—-1/2

Tit1/2

Then, area-averaged values of fluxes can be defined such
that

1
< F >i+1/2 == / FdO',
0i+1/2 Tit1/2
1
<@ >j+1/2 = / Gdo (26)
Oj+1/2 Tit1/2

where the bounding surface area ;41 /2, 0j41/2 actually
represent cell face lengths in two—dimensiona{Cartesian
coordinate system. After substituting these definitions
of averaging into the equation 24 and dropping brack-
ets, the following discrete form of conservation equa-
tions written in two-dimensional Cartesian coordinate
system can be obtained.

oU; ; Oit1/2 Oi—1/2
WJ = - (Fi+1/2T,j _Fi—1/2 Qi
(27)
Oj54+1/2 O5-1/2
- (Gj+1/2 ]Qi,j _Gj—1/2 ]Qi,j ) + Sij

Point Implicit Time Integration

Nonequilibrium flows involving finite-rate chemistry
and thermal energy relaxation often can be very dif-
ficult to solve numerically because of the stiffness. The
stiffness in terms of time scale can be defined as the
ratio of the largest to the smallest time scale such that

Stiffness = Tlargest/ Tsmallest

where T can be any characteristic time in the flow field.
For reactive flow problems, there can be several chem-
ical time scales and relaxation time scales in addition
to the fluid dynamic time scale associated with con-
vection. The stiffness parameter can be as high as or-
der 10%. The point implicit formulation evaluating the
source terms at time level n + 1 has been an effective
method used to numerically integrate stiff systems [14].
The point implicit treatment is known to reduce the
stiffness of the system by effectively rescaling all the
characteristic times in the flow fields into the same or-
der of magnitude.

Equation 27 is rewritten here with source terms eval-
uated at the time level n + 1 as follows:

9Ui,j

ot
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- —(Fr A2 _pn
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’

The source vector is then linearized about the present
time level such that

St = gn 4 (ﬁ) AU

i (29)



When simple Euler time integration is used, substitut-
ing this linearization into the above equation and rear-
ranging yields

I as\" n Tit1/2 n  Ti-1/2

e~ () | av = -m 2l e 7
n 9j+1/2 gj-1/2 n

~Ginpq,  t CiapTg - 1S (30

These equations can be evaluated to get AU entirely at
the current time level at the expense of matrix inversion
containing source term Jacobian.

Temporal accuracy can be added using Runge—Kutta
integration schemes instead of first-order accurate Euler
integration. The two-step explicit Runge—Kutta time
integration schemes can be written as follows:

Un-i-% = [pr +71AU”
(31)

UMl = UntE 4 g AUME + AU

where 11 = 1.0, 72 = 0.5, and (s = -0.5, and the three

step scheme is given by

U™s = U"+~yAU"

U3 = U5 4 AU + QAU (32)
yntl U™ 3 4y AU™E + AU S
where v1 = 8/15, v = 5/12, v = 3/4, and { =

—17/60, (s = —5/12.

Flux-Difference Split Algorithm

The basic feature of the flux-difference split algorithm
is to solve a local Riemann problem at the cell interface
in order to determine the cell-face flux. An approxi-
mate Riemann problem is used with Roe’s scheme, and
this approach has been used very successfully. Roe’s
scheme was originally developed for a perfect gas [15].
An extension of this method to a thermo-chemical
non-equilibrium gas was made by Grossman and Cin-
nella [16], and the flux-difference scheme used here is
based on their method.

The approximate Rieman solver is implemented by
computing the cell face flux as a summation of the con-
tributions from each wave component.

1 N,+4
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. (33)
5 ([[F]]A + [[F]]B + [[F]]C)as follows:
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where subscript R and L represent right and left state
respectively, A; are eigenvalues, E; are eigenvectors, «;
are corresponding wave strengths, and # indicates Roe
averaged quantity. The [[F]] , term corresponding to
the repeated eigenvalues A\; = u can be written as
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The [[F]|, and [F]|, terms which are contributions
from the eigenvalues A\; = u % a, are found to be

1 ﬁég&
[Fls.c = 55z ([Pl £2a[[u]) @+ a) H
H+da

(35)

For added spatial accuracy, higher-order approxima-

tion using the MUSCL approach can be applied. When

the MUSCL approach is employed, the primitive vari-

ables of right and left states at the cell interface are eval-
uated using the following extrapolation formulas [7]:

1—k - 1+ -_

qiL+1/2 % + 0 qj1jo + —— 8 i1y
36)
R 1 + K gy 1 —K = (
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where ¢ is any primltlve variable, superscript L and
R represent left and right extrapolation respectively,
and the value of & determines the type of extrapolation
method such that

—1 2nd order upwind scheme
k=1< 1/3 3rd order upwind scheme
1  2nd order classic centered scheme

(37)

In the above equations, the slopes of the variables are
limited to prevent nonphysical oscillations and to pre-
serve the TVD(Total Variation Diminishing) property.
The limited slopes can be written using minmod limiter

min mod(d ;11 /2,w0 ¢;_1/2)
(38)
min mod(d ;11 /2,wd ¢i3/2)

6 ¢t /2 =
&t dit+1/2 =
The minmod limiter is a function that selects the small-

est number from a set when all have the same sign but
is zero if they have different signs such that

z y and zy>0
min mod(z, y) y and =zy>0
zy <0

(39)



with the limits on w given as

Temperature Calculation

The conserved variables at each cell center are updated
using the equation 30 by a matrix inversion scheme.
From these conserved variables, new values of the prim-
itive variables, ps, u, v, €,, E are easily obtained.
However, to close the problem, the temperature and
vibrational temperature are determined at each iter-
ation cycle. In order to obtain the temperatures, a
Newton—Raphson method is used in the following man-
ner [10, 17):

pe =3 pees (T4, 7))

T(k+1) T(k) + s
pCv,tr
(41)
PEy — Z Ps€y,s (T(k))
T(k+1) T(k) s
) T pCo,

While total internal energy e and vibrational energy
e, are directly obtained from the updated conservative
variables, species internal energies e, and vibrational
energies e, are calculated from the gas model using the
current values of both temperatures. The iteration is
carried out until converged values of both temperatures
are obtained.

Validation Studies
Hjy—Air Reaction Model and Local Ignition Averaging

The two-step reaction model proposed by Rogers and
Chinitz [18] is used in this study. This model was de-
veloped to represent Ho—Air chemical kinetics with as
few reaction steps as possible while still giving reason-
ably accurate global results. This model consists of the
following two steps:

H; + 09
20H + H,

+—— 20H
(42)
+«— 2H,0

where the forward reaction rate constants are given by

Kpp= Apo($) TV Eap(~Ey,/RT)  (43)

and the pre-exponential Ay .(¢) is a function of the
equivalence ratio ¢, the fuel-to-air ratio divided by the
stoichiometric fuel-to-air ratio. Values of the parame-
ters used in this model are

Asi(@) = [8.917¢ + (31.433/¢) — 28.950] 1047
Nyr = —-10
E;1 = 4,865 cal/mole
(44)
Afa(d) = [2.000 + (1.333/¢) — 0.833¢] 1054
N¢o = —13
E;s = 42,500 cal/mole

(45)

The backward reaction rate can be obtained from

K = Kp /Ko, (46)
where the equilibrium constant K., is given by
K.r= A, TN Exp(—E,.,/RT) (47)
where
Aci = 26.164x 10° cm?®/mole-s
1 = 0 (48)
1 = 17,867 cal/mole
Ao = 2.682x107% cm®/mole’s
2 = 1 (49)
e = —137,930 cal/mole
This model is valid for initial temperatures of

1,000—2,000 K and equivalence ratios of 0.2—2.0. Since
the chemistry model is not valid below temperature of
1,000 K, an ignition temperature must be specified.

Nitrogen is also counted as a collisional partner in the
thermodynamic model and the relaxation process, but
not included in the chemical reaction model since the
maximum temperature in hydrogen-air reaction does
not reach the dissociation temperature of Nitrogen.

Before an actual calculation using the flow solver is
made, the chemical kinetic model needs to be examined
to see how each species concentration is changing, and
on what time scale. This may provide some insight on
the stiffness of the system and some clues to establish
a flow solver time step that permits species concentra-
tions to follow the correct kinetics.

The mass production rate equation 14 can be inde-
pendently integrated using the reaction data in equa-
tions 43—49 to yield the species mass fraction history.
The typical result obtained using a Runge—Kutta in-
tegration method is in figure 1. The mass fraction of
OH is shown to rise very rapidly as soon as the ignition
starts. The OH production reaction is instantaneous
at its initial stage and goes to equilibrium very quickly
in less than 107! seconds. After that, the reactions
seem to remain in equilibrium until HoO production
reaction begins around 10~% seconds. It is interesting
to note that all these major changes in the species con-
centrations take place within the first 10~7 seconds, a
time interval that is a typical fluid dynamic time step.
Moreover, the integration time step should remain at
or below 10712 seconds to ensure stable integration us-
ing the Runge—Kutta scheme, and to properly follow
the chemical kinetics. This shows the stiffness of the
chemical reaction model.

From the above observation, it could be deduced that
the integration time step for the flow solver should be
the order of 107'2 seconds or less to properly include
the chemical kinetics. Moreover, it should be much
less than this order in regions of OH production. How-
ever, it is practically impossible to use this small time
step in the flow solver. When using 10712 seconds as a
flow solver time step, the order of 10° integration steps
might be needed to solve a typical detonation wave
propagation problem which has a time scale of interest
of the order of 10~2 seconds. This would result in 10*
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Figure 1: Species mass fraction history from chemical
kinetics

days of CPU time when 1 second of CPU time per com-
putation cycle, which is a proper estimate for this code
on a typical front-end workstation, is assumed. Fortu-
nately, however, most of this stiffness problem can be
taken care of by the point implicit treatment of source
terms, through effectively rescaling all the characteris-
tic time scales involved. Thus, a typical fluid dynamic
time step of the order of 10~7 seconds can be safely
used throughout the calculation, since the species pro-
duction rates during this time interval can be properly
treated by the effective rescaling of the chemical reac-
tion time scale.

However, the very first time step where all the dras-
tic changes take place within that short period of time
cannot be properly described by rescaling time alone.
Another special treatment for the igniting cell is needed
to be able to use a typical flow solver time step. For
this purpose, a Local Ignition Averaging Model (LIAM)
is proposed here. The basic idea of this model comes
from the fact that the species mass fractions are chang-
ing drastically in a very short period of time as soon
as ignition starts, and goes to equilibrium soon after-
wards. LIAM seperates the cell in which the ignition
condition is met, and then integrates the chemical ki-
netics equations alone for that cell. A time step less
than 10712 seconds is used in the integration within
the interval of the flow solver time step. The average
production rate of each species during this time interval
is then estimated using

_ Aps
- Atf

wy (50)

where Ap, is the density change of species s obtained
from a separate integration of chemical kinetic equa-
tions during this time interval, and Aty is the flow
solver time step. The average value of the forward re-
action rate for each reaction during this time interval
can be estimated from the following relations.

Wo oH
Rpp=-20 g, M
T T Mo, 27 2Mon

(51)

These terms need to be obtained for the calculation
of the source term Jacobian. Here, backward reaction
rates during this first reaction time step are assumed
to be zero.

LIAM turns out to work well together with the point
implicit scheme to accurately describe chemical kinet-
ics in the flow solver using a typical flow solver time
step of 10~7 seconds. Figure 2 shows calculated re-
sults of the species mole fraction history at a fixed
location inside the detonation chamber initially filled
with hydrogen—air mixture. Excellent agreement can
be seen with the equilibrium concentration data from
the CEA code [19]. This assures that the chemical ki-
netics are properly modeled and coupled to the flow
solver.
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Figure 2: Species mole fraction history from the flow
solver

Spatial and Temporal Accuracy

Generally speaking, a higher-order scheme may yield
more accurate results, in turn requiring more com-
puting time. The present computer model accom-
modates the options to choose numerical schemes of
both space and time integration up to third-order ac-
curacy. For temporal accuracy, Euler integration for
first-order, two-step Runge—Kutta(RK) integration for
second-order, and three-step RK for third-order are
contained in the model. And for the spatial accuracy,
the MUSCL approach is prepared for the higher-order
approximations. The purpose of this section is to study
the effect of the order of the numerical schemes on the
predicted detonation wave. This can then be used to
select the order of the scheme necessary to provide ad-
equate resolution of the physical process.

Figure 3 shows a comparison of detonation wave pres-
sure profiles along a detonation chamber when numer-
ical schemes of different order of accuracy are imple-
mented. This figure compares detonation wave pro-
files, propagating into the quiescent hydrogen—air mix-
ture initially at 1 atmosphere pressure. The higher-
order calculation captures the higher peak pressure as
expected. However, it is interesting to note that the
second-order calculation is close to the third-order cal-



culation, and that the overall shapes of the two waves
are almost the same.
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Figure 3: Wave profiles from different order of accuracy

This convergence trend can be seen more clearly in
figures 4. This figure shows detonation wave velocities
as a function of distance from the initiation point for
each scheme. From this observation, a second-order
calculation is a reasonable choice when efficiency and
accuracy are considered together. Thus, a second-order
accurate scheme in both space and time is employed to
be used for further calculations, unless otherwise noted.
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Figure 4: Detonation velocities from different order of
accuracy

Mesh Convergence

A mesh convergence test is performed to determine the
proper mesh size to insure accurate resolution of the
physical process. The same configuration and parame-
ters are used as before but with different mesh sizes. A
second-order accurate scheme in both space and time
is used throughout the calculation.

Figure 5 shows detonation wave profiles resulting
from three different mesh sizes. Actual dimensional

sizes of 5.0, 2.5, and 0.5 mm are used, respectively,
in modeling a two-meter long tube with planar initia-
tion model. For calculations of both 5.0 and 2.5 mm
mesh size, a time step of 10~7 seconds has been used
successfully to yield stable solutions. However, for the
smallest mesh size of 0.5 mm, a smaller time step of
5 x 10~ seconds has been used, since a time step of
107 seconds does not yield a stable solution for this
mesh size.

The convergence trend can be seen clearly from fig-
ure 6 which depict detonation wave velocities along the
distance from an initiation point for each mesh size
used. The results of 2.5 mm mesh shows almost con-
verged values to the 0.5 mm mesh, in detonation veloc-
ity as well as in overall wave shape. If we assume the
computing time of 2.5 mm mesh case to be 1 CPU, then
the corresponding computing times of 5.0 mm and 0.5
mm case will be about 1/4 CPU and 50 CPU, respec-
tively, for two-dimensional calculation. When we take
into account accuracy as well as efficiency in choosing
mesh size, mesh size of 2.5 mm can be a reasonable
choice.

Mesh Convergence Test
( Comparison of pressure histories at t=0.3 ms)
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Figure 5: Wave profiles from different mesh sizes

Independence on the Geometry

The properties of fully developed detonation waves
should be the same regardless of the geometry involved
whenever the initial condition and composition of the
fuel—air mixture are the same. Four different calcula-
tions are performed here to confirm the results to fol-
low this known postulate. We take four cases with two
kinds of geometry and two initiation methods, which
are two-dimensional calculations with planar initiation
and with point initiation, and repeat for axi-symmetric
flow with the same initiation methods. The calculation
domain is 68.5 cm X 3.75 cm for both and filled with
stoiciometric hydrogen—air mixture. Initiation occurs
near the left-end wall.

Figure 7 shows pressure contour plots at specified
times for a point initiation case in axi-symmetric ge-
ometry. The formation of a planar detonation wave
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is clearly captured. A planar wave can be observed to
evolve from a spherical wave originated from a point ini-
tiation through the interactions of the reflecting waves.

t=10 psec

t=20 psec

t =30 psec

t=90 psec

]

Figure 7: Point initiation in axi-symmetric geometry

The calculated results are summarized in figures 8
and 9. These figures show detonation wave velocities
and the CJ plane pressures, respectively, along two dif-

ferent lines which are lower boundary (actually, center
line) and upper wall. For point initiation cases, deto-
nation velocities and the pressures on the axis are ob-
served to remain lower than those of planar initiation
cases and keep increasing, while the detonation veloci-
ties and the pressures on the wall are much higher than
those of planar initiation cases and keep decreasing un-
til the formation of the planar wave. The higher pres-
sure and velocity on the wall are due to the reflection
of the detonation wave. The detonation velocities and
the pressures for all four cases are observed to converge
to the same value at a certain distance from the ini-
tiation point where fully developed planar waves are
formed. And this result confirms the known postulate
previously stated.
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Figure 8: Detonation velocities from different geome-
tries in use
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Figure 9: Detonation pressures from different geome-
tries in use

Comparison with Theoretical CJ data

The calculated detonation wave properties are com-
pared with the theoretical CJ data. Since the property



of the fully developed detonation wave is converging to
the same value regardless of the geometry involved as
seen in the previous section, and since we are interested
in the final converged state of the CJ condition, calcula-
tions can be properly performed on the one-dimensional
planar geometry for the sake of efficiency.

The computational domain is, thus, composed of a
detonation tube of semi-infinite length filled with a mix-
ture of hydrogen and air initially at 1 atmosphere and
298.15 K. The detonation is initiated just adjacent to
the left-end wall, and the planar wave propagates to the
right through the quiescent gas mixture. The detona-
tion wave velocity, pressure, density, and temperature
as a function of distance from an initiation point are
recorded and compared with the theoretical CJ data.
The theoretical CJ data are obtained from the CEA
code [19]. The converging trend of all the variables of
the detonation wave is confirmed in each calculation
of different equivalence ratios. These converged values
can be compared to the theoretical CJ data. The re-
sults are summarized in figure 10, which depicts the
converged values of each detonation variable with vary-
ing equivalence ratios, and compares these values with
the theoretical CJ data. Excellent agreement between
them is observed.
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Figure 10: Comparison with theoretical CJ data

Simulation of Shock-Induced Detonation

A series of shock-induced detonation experiments has
been performed at The University of Texas at Arling-
ton (UTA). A schematic of the experimental facility is
shown in figure 11. The driver tube was highly pressur-
ized with either air or helium, and the detonation tube
was filled with a stoichiometric mixture of fuel and oxy-
gen/air. These two tubes were separated by a double-
diaphragm section as shown. The pressure histories
were recorded at several stations on the wall of the det-
onation tube during this experiment. The results of a
numerical simulation of this experiment are compared

with experimental data. This provides validation for
the numerical simulation and an aid in understanding
the experimental results as well.
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Figure 11: The schematic of the UT Arlington experi-
ment

Figure 12 shows the pressure histories from an ex-
periment, recorded at stations 4 and 5 corresponding
to 166.4 cm and 224.8 cm, respectively, from the loca-
tion of the diaphragm [21]. In this experiment, the ini-
tial pressure of the stoichiometric hydrogen-air mixture
inside the detonation tube was 3 atm and the driver
tube was pressurized initially to 200 atm with helium.
Another experimental result from a different shot, but
with the exactly same initial set-up is seen in figure 13.
These two figures are observed to show almost identical
results, and this suggests a reliability of the experimen-
tal data. Both the incident detonation wave and the
reflected wave were clearly captured at each station.
The reflected wave is travelling toward the left after re-
flecting from the diaphragm separating the driven tube
and detonation tube. It is interesting to note that the
pressure history after arrival of the reflected wave is
observed to increase with additional step-like shapes.
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Figure 12: Pressure measurements at station 4 and 5
for test No.14

The modeling of the experiment with a numerical
simulation requires that some assumptions and simpli-
fications be made. In this experiment, the double di-
aphragm section between driver tube and detonation
tube measures 11.43 cm long, and is pressurized ini-
tially to 100 atm, about a half of the pressure in the
driver tube. Therefore, complex wave interactions may
exist ingide the double diaphragm section and driver
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Figure 13: Pressure measurements at station 4 and 5
for test No.23

tube until the second diaphragm ruptures and shock-
induced detonation is initiated in the detonation tube
adjacent to the diaphragm. The details caused by the
double diaphragm section are not modeled in the sim-
ulation, and instead are replaced by an effective pres-
sure inside the driver tube. This effective pressure is
assumed to act directly on the hydrogen-air mixture in
the detonation tube as if the diaphragm is effectively re-
moved at ¢ = 0. The effective pressure should be lower
than the actual initial pressure in the driver tube that
was 200 atm in this experiment, and higher than the
pressure inside the double diaphragm section that was
100 atm. Therefore, we take 150 atm as a reasonable
first guess for the effective pressure in the driver tube.

In the experimental set-up, another diaphragm sep-
arated the right-end of the detonation tube and the
driven tube. The inner diameter of the driven tube was
4.11 cm, much smaller than the 15.24 cm diameter det-
onation tube. The right-end of the detonation tube is
modeled by a reflective boundary based on the fact that
the area opening to the driven tube, even after a rup-
ture of the diaphragm, corresponds to only 7 percent of
the cross-sectional area of the detonation tube.

Figure 14 shows the resulting pressure histories at the
station 4 and 5 from the simulation using the previously
described modeling. It is quite amazing that the simu-
lation result nearly reproduces the experimental data,
in spite of the assumptions and simplifications used.
The arrival time lag in the incident detonation wave
between station 4 and 5 is observed to be almost the
same as the experimental measurement, which suggests
excellent agreement in the detonation wave velocities.
The same agreement is observed in the reflected waves.
The pressure levels of both incident and reflected waves
are also seen to be in good agreement. It is interesting
that the calculated pressure history also shows an in-
crease at each station after the arrival of the reflected
wave. The increasing pattern and the level of pressure
from the calculation almost exactly reproduce the ex-
perimental result.

This step-like increasing pattern of the pressure his-
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Figure 14: Calculated pressure histories at station 4
and 5

tory is closely examined from the simulation results.
Figure 15 shows time evolution of the pressure and the
density profiles inside the detonation tube. The inci-
dent detonation wave is clearly seen to propagate to the
right, and the driver material interface is also clearly
observed from the density profile to follow the incident
wave. The reflection of the incident wave from the right
boundary can be seen in the graph at 1.5 msec, and the
reflected wave propagates to the left until it meets the
right-running material interface around 2.4 msec. The
left-running reflected wave reflects again from the ma-
terial interface, and as a result, a higher pressure and
density are generated from this reflection and propa-
gates back to the right. The material interface travels
back toward the left as can be seen in the graphs af-
ter 2.4 msec. The right-running wave reflected from
the material interface is observed to reflect once again
from the right boundary around 3.1 msec and the re-
sulting shock-increased pressure and density are seen
to propagate back to the left. From these observations,
the step-like increasing pattern of the pressure history
turns out to be a result of these multiple wave reflec-
tions.

The simulation result using the current numerical
model is in excellent agreement with the experimen-
tal data. From this observation, the assumptions and
the simplifications made to model the experiment are
also justified. Especially the effective driver pressure
appears to be a reasonable simplification to model the
double diaphragm section. This simulation validates
the current numerical model to be used with confidence
to calculate the unsteady propagation of a detonation
wave and its interactions with the boundaries as well
as other waves.

Conclusions

A numerical model to simulate the transient combus-
tion process in a pulse detonation engine has been
presented. For the purpose of constructing an effi-
cient numerical tool to be used in parametric stud-
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Figure 15: Wave interations in shock-induced detona-
tion tube

ies, while maintaining a reasonable accuracy to be
used for analysis, a two-step global model has been
selected and validated for the chemcal reactions of a
hydrogen—air mixture. The calculated results from the
present model have been compared with the theoretical
Chapman—Jouguet data and experimental data. Excel-
lent agreement has been observed. These observations
validate the efficiency and the accuracy of the present
model.

Numerical schemes of different order have been tested
both in temporal and spatial accuracy up to the third-
order, as well as mesh convergence tests have been per-
formed for different mesh sizes. The second-order accu-
rate scheme in both space and time integration applied
to 2.5 mm mesh size seems to be an appropriate choice
from the trade-offs of accuracy and efficiency.

Geometry independence of detonation wave proper-
ties has been also confirmed as a validation process of
the present numerical model.

The shock-induced detonation experiment has been
simulated. The calculated result has almost exactly re-
produced the experimental data, and this provides a
validation of the present model in the unsteady propa-
gation of a detonation wave.
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